**Objectives**
Recent publications (Yao et al)\(^1\) evaluated the outcomes of a series of DFU patients and found that earlier treatment with NPWT significantly reduced overall cost of treatment and greatly improved outcomes. Using Mechanically Powered Negative Pressure Wound Therapy (MPNPWT) as primary intervention in a high risk surgical wound can be as effective, if not more effective, as waiting to initiate treatment in the outpatient setting.

**Purpose**
The authors present a case using the SNaP\(^\circ\) Wound Care System in both the acute and outpatient settings to heal a wound in a patient with drop foot and multiple co-morbidities.

**Materials & Methods**
A 64 year old male patient with multiple comorbidities including Diabetes Type II, Diabetic Peripheral Neuropathy, Chronic Kidney Disease, previous partial 4th and 5th ray amputation and foot drop, presented to clinic with a three month history of chronic foot ulceration to the plantar aspect of his right foot. Patient presented complaining of fever, chills, generalized weakness and dizziness over a three day period with right foot abscess tracking dorso-lateral from the original wound. He underwent immediate Incision and Drainage (I& D) and debridement after admission to the hospital. He was started on intravenous Bactrim and Cefazolin.

SNaP\(^\circ\) was initiated 4 days status post I&D, when infection was resolved and x-rays were negative for osteomyelitis. The SNaP Wound Care System was changed 2 – 3 times weekly, according to manufacturer protocol. A hydrocolloid SecurRing\(^\circ\) was used to obtain a complete seal on uneven skin surfaces(Figure 4).

**Results**
After I&D and wound debridement the wound measured 8.3cm x 5.7cm x 0.8cm (Figure 3). MPNPWT was initiated and within a two week period of time, the wound decreased in size by 35%. SNaP\(^\circ\) was effective in primary treatment of a highly exudative, high risk plantar foot wound. Patient was discharged from the hospital after day 6 and continued use of SNaP\(^\circ\) at home. After 49 days of therapy the wound decreased to 5.0 x 4.5 x 0.1cm (Figure 6). The remaining wound is very superficial with no tracking or tunneling.

**Conclusions**
Diabetic foot wounds have a notorious high predilection to lead to higher level amputations when infections are not treated appropriately. Considering our patient’s risk level, including foot drop and previous partial foot amputations, it was imperative to initiate immediate and appropriate therapy. The patient underwent immediate hospitalization, I&D, and IV antibiotic therapy. This was followed by wound care consisting of expedient use of the SNaP\(^\circ\) Wound Care System. The SNaP\(^\circ\) device is “off-the-shelf” therapy and was able to be placed as soon as the wound was ready. The patient was quickly discharged home, effectively reducing a costly hospital stay. Due to the simplicity of the system, and with the use of the hydrocolloid SecurRing\(^\circ\) to ensure a solid seal, we were able to train the patient’s wife to continue uninterrupted care while at home. The patient continued once a week outpatient clinic visits and continues to show evidence of healing on a weekly basis.

**References**